549 research outputs found

    Orbital ordering in La0.5_{0.5}Sr1.5_{1.5}MnO4_4 studied by model Hartree-Fock calculation

    Full text link
    We have investigated orbital ordering in the half-doped manganite La0.5_{0.5}Sr1.5_{1.5}MnO4_4, which displays spin, charge and orbital ordering, by means of unrestricted Hartree-Fock calculations on the multiband pp-dd model. From recent experiment, it has become clear that La0.5_{0.5}Sr1.5_{1.5}MnO4_4 exhibits a cross-type (z2−x2/y2−z2)(z^2-x^2/y^2-z^2) orbital ordering rather than the widely believed rod-type (3x2−r2/3y2−r2)(3x^2-r^2/3y^2-r^2) orbital ordering. The calculation reveals that cross-type (z2−x2/y2−z2)(z^2-x^2/y^2-z^2) orbital ordering results from an effect of in-plane distortion as well as from the relatively long out-of-plane Mn-O distance. For the "Mn4+^{4+}" site, it is shown that the elongation along the c-axis of the MnO6_6 octahedra leads to an anisotropic charge distribution rather than the isotropic one.Comment: 4 pages, 5 figure

    Spin and charge ordering in self-doped Mott insulators

    Full text link
    We have investigated possible spin and charge ordered states in 3d transition-metal oxides with small or negative charge-transfer energy, which can be regarded as self-doped Mott insulators, using Hartree-Fock calculations on d-p-type lattice models. It was found that an antiferromagnetic state with charge ordering in oxygen 2p orbitals is favored for relatively large charge-transfer energy and may be relevant for PrNiO3_3 and NdNiO3_3. On the other hand, an antiferromagnetic state with charge ordering in transition-metal 3dd orbitals tends to be stable for highly negative charge-transfer energy and can be stabilized by the breathing-type lattice distortion; this is probably realized in YNiO3_3.Comment: 4 pages, 4 figure

    Interplay between orbital ordering and lattice distortions in LaMnO3, YVO3, and YTiO3

    Full text link
    We have studied the interplay between orbital ordering, Jahn-Teller and GdFeO3-type lattice distortions in perovskite-type transition-metal oxides using model Hartree-Fock calculations. It has been found that the covalency between A-site cations and oxygens causes interaction between the Jahn-Teller and GdFeO3-type distortions. The present calculations explain why the d-type Jahn-Teller distortion and orbital ordering compatible with it are realized in LaMnO3, YVO3 and YTiO3Comment: 5 pages, 8 figure

    Theory of Mott insulator/band insulator heterostructure

    Full text link
    A theory of heterostructures comprised of LaTiO3_3 (a Mott insulator) and SrTiO3_3 (a band insulator) is presented. The band structure of the Ti dd% -electrons is treated with a nearest neighbor tight-binding approximation; the electric fields arising from the La3+^{3+}/Sr2+^{2+} charge difference and the carriers are treated within a Hartree approximation; and the on-site interactions are treated by unrestricted Hartree-Fock. The phase diagram as a function of interaction strength and layer number is determined and predictions are made for optical conductivity experiments. A note worthy finding is that the edges of the heterostructure are generally metallic.Comment: 11 pages, 9 figure

    Orbital polarons and ferromagnetic insulators in manganites

    Full text link
    We argue that in lightly hole doped perovskite-type Mn oxides the holes (Mn4+^{4+} sites) are surrounded by nearest neighbor Mn3+^{3+} sites in which the occupied 3d3d orbitals have their lobes directed towards the central hole (Mn4+^{4+}) site and with spins coupled ferromagnetically to the central spin. This composite object, which can be viewed as a combined orbital-spin-lattice polaron, is accompanied by the breathing type (Mn4+^{4+}) and Jahn-Teller type (Mn3+^{3+}) local lattice distortions. We present calculations which indicate that for certain doping levels these orbital polarons may crystallize into a charge and orbitally ordered ferromagnetic insulating state.Comment: 5 pages, 4 figures, to be published in PR

    Charge and orbital ordering in underdoped La1-xSrxMnO3

    Full text link
    We have explored spin, charge and orbitally ordered states in La1-xSrxMnO3 (0 < x < 1/2) using model Hartree-Fock calculations on d-p-type lattice models. At x=1/8, several charge and orbitally modulated states are found to be stable and almost degenerate in energy with a homogeneous ferromagnetic state. The present calculation indicates that a ferromagnetic state with a charge modulation along the c-axis which is consistent with the experiment by Yamada et al. might be responsible for the anomalous behavior around x = 1/8.Comment: 5 pages, 5 figure

    Electronic structure of In1−x_{1-x}Mnx_xAs studied by photoemission spectroscopy: Comparison with Ga1−x_{1-x}Mnx_xAs

    Full text link
    We have investigated the electronic structure of the pp-type diluted magnetic semiconductor In1−x_{1-x}Mnx_xAs by photoemission spectroscopy. The Mn 3dd partial density of states is found to be basically similar to that of Ga1−x_{1-x}Mnx_xAs. However, the impurity-band like states near the top of the valence band have not been observed by angle-resolved photoemission spectroscopy unlike Ga1−x_{1-x}Mnx_xAs. This difference would explain the difference in transport, magnetic and optical properties of In1−x_{1-x}Mnx_xAs and Ga1−x_{1-x}Mnx_xAs. The different electronic structures are attributed to the weaker Mn 3dd - As 4pp hybridization in In1−x_{1-x}Mnx_xAs than in Ga1−x_{1-x}Mnx_xAs.Comment: 4 pages, 3 figure

    Origin of G-type Antiferromagnetism and Orbital-Spin Structures in LaTiO3{\rm LaTiO}_3

    Full text link
    The possibility of the D3dD_{3d} distortion of TiO6{\rm TiO}_6 octahedra is examined theoretically in order to understand the origin of the G-type antiferromagnetism (AFM(G)) and experimentally observed puzzling properties of LaTiO3{\rm LaTiO}_3. By utilizing an effective spin and pseudospin Hamiltonian with the strong Coulomb repulsion, it is shown that AFM(G) state is stabilized through the lift of the t2gt_{2g}-orbital degeneracy accompanied by a tiny D3dD_{3d}-distortion . The estimated spin-exchange interaction is in agreement with that obtained by the neutron scattering. Moreover, the level-splitting energy due to the distortion can be considerably larger than the spin-orbit interaction even when the distortion becomes smaller than the detectable limit under the available experimental resolution. This suggests that the orbital momentum is fully quenched and the relativistic spin-orbit interaction is not effective in this system, in agreement with recent neutron-scattering experiment.Comment: 9 pages, 6 figure

    Photoemission Spectral Weight Transfer and Mass Renormalization in the Fermi-Liquid System La1−x_{1-x}Srx_xTiO3+y/2_{3+y/2}

    Full text link
    We have performed a photoemission study of La1−x_{1-x}Srx_xTiO3+y/2_{3+y/2} near the filling-control metal-insulator transition (MIT) as a function of hole doping. Mass renormalization deduced from the spectral weight and the width of the quasi-particle band around the chemical potential μ\mu is compared with that deduced from the electronic specific heat. The result implies that, near the MIT, band narrowing occurs strongly in the vicinity of μ\mu. Spectral weight transfer occurs from the coherent to the incoherent parts upon antiferromagnetic ordering, which we associate with the partial gap opening at μ\mu.Comment: 4 pages, 3 figure
    • …
    corecore